

How to get query results as a Stream

www.thoughts-on-java.org

Advantages of the stream() method
In the beginning, it looks like a small improvement that makes your
code a little less clunky. You already can take the List of query results
and call its stream() method to get a Stream representation.

But that is not the most efficient approach. Hibernate will get all the
selected entities from the database, store them in memory and put
them into a List. You then call the stream() method and process the
results one by one.

But if you’re working on a huge result set, you better scroll through
the result records and fetch them in smaller chunks. You’re already
familiar with that approach if you’ve used JDBC result sets or
Hibernate’s ScrollableResult.

The Hibernate team used the existing scroll() method and the
ScrollableResult to implement implement the new stream() method.

How to use the stream() method
The stream() method is part of the Query interface and you can,
therefore, use it with all kinds of queries and projections.

Entities
Entities are the most common projection with Hibernate, and you
can use them in a Stream in any way you like.

Stream<Book> books = session.createQuery(

"SELECT b FROM Book b", Book.class).stream();

books.map(b -> b.getTitle() + " was published on " +

 b.getPublishingDate())

.forEach(m -> log.info(m));

http://www.thoughts-on-java.org/

How to get query results as a Stream

www.thoughts-on-java.org

Scalar Values
Up to now, scalar values were not a very popular projection because
it returns a List of Object[]. You then have to implement a loop to go
through all Object[]s and cast its elements to their specific types.
That gets a lot easier with Streams.

POJOs
POJOs or similar projections can be easily created with a constructor
expression, as you can see in the following code snippet.

Unfortunately, there seems to be a bug (HHH-11029) in Hibernate
5.2.2 so that these projections don’t work with Streams. Instead of
mapping the BookValues to Strings and writing them to the log file,
the following code snippet throws a ClassCastException.

Stream<Object[]> books = session.createNativeQuery(

"SELECT b.title, b.publishingDate FROM book b").stream();

books.map(b -> new BookValue((String)b[0], (Date)b[1]))

.map(b -> b.getTitle() + " was published on " +

b.getPublishingDate())

 .forEach(m -> log.info(m));

Stream<BookValue> books = session.createQuery(

"SELECT new org.thoughts.on.java.model.BookValue(b.title,

b.publishingDate) FROM Book b",

BookValue.class).stream();

books.map(b -> b.getTitle() + " was published on " +

b.getPublishingDate()).forEach(m -> log.info(m));

http://www.thoughts-on-java.org/
https://hibernate.atlassian.net/browse/HHH-11029

